The cactus rank of cubic forms

Bernardi, Alessandra ; Ranestad, Kristian (2011) The cactus rank of cubic forms. [Preprint]
Full text disponibile come:
[thumbnail of cubicpolys1011.pdf]
Anteprima
Documento PDF
Licenza: Creative Commons Attribution Non-commercial 3.0 (CC BY-NC 3.0)

Download (308kB) | Anteprima

Abstract

We prove that the smallest degree of an apolar $0$-dimensional scheme to a general cubic form in $n+1$ variables is at most $2n+2$, when $n\geq 8$, and therefore smaller than the rank of the form. When $n=8$ we show that the bound is sharp, i.e. the smallest degree of an apolar subscheme is $18$.

Abstract
Tipologia del documento
Preprint
Autori
AutoreAffiliazioneORCID
Bernardi, Alessandra
Ranestad, Kristian
Settori scientifico-disciplinari
DOI
Data di deposito
10 Ott 2011 10:04
Ultima modifica
08 Nov 2011 09:43
URI

Altri metadati

Statistica sui download

Statistica sui download

Gestione del documento: Visualizza il documento

^