Long memory and nonlinearities in realized volatility: a Markov switching approach

Bordignon, Silvano ; Raggi, Davide (2010) Long memory and nonlinearities in realized volatility: a Markov switching approach. Bologna: Dipartimento di Scienze economiche DSE, p. 40. DOI 10.6092/unibo/amsacta/4547. In: Quaderni - Working Paper DSE (694). ISSN 2282-6483.
Full text disponibile come:
[thumbnail of 694.pdf]
Anteprima
Documento PDF
Licenza: Creative Commons Attribution Non-commercial 3.0 (CC BY-NC 3.0)

Download (609kB) | Anteprima

Abstract

Goal of this paper is to analyze and forecast realized volatility through nonlinear and highly persistent dynamics. In particular, we propose a model that simultaneously captures long memory and nonlinearities in which level and persistence shift through a Markov switching dynamics. We consider an efficient Markov chain Monte Carlo (MCMC) algorithm to estimate parameters, latent process and predictive densities. The insample results show that both long memory and nonlinearities are significant and improve the description of the data. The out-sample results at several forecast horizons, show that introducing these nonlinearities produces superior forecasts over those obtained from nested models.

Abstract
Tipologia del documento
Monografia (Working paper)
Autori
AutoreAffiliazioneORCID
Bordignon, Silvano
Raggi, Davide
Parole chiave
Realized volatility, Switching-regime, Long memory, MCMC, Forecasting
Settori scientifico-disciplinari
ISSN
2282-6483
DOI
Data di deposito
04 Feb 2016 11:38
Ultima modifica
04 Feb 2016 11:38
URI

Altri metadati

Statistica sui download

Statistica sui download

Gestione del documento: Visualizza il documento

^