Sedimentary Facies Analysis and Segmentation

Di Martino, Andrea ; Amorosi, Alessandro (2023) Sedimentary Facies Analysis and Segmentation. University of Bologna. DOI 10.6092/unibo/amsacta/7308. [Dataset]
Full text disponibile come:
[thumbnail of Training subset] Archivio (Training subset)
Licenza: Creative Commons: Non Commerciale - Condividi allo stesso modo 4.0 (CC BY-NC-SA 4.0)

Download (617MB)
[thumbnail of Validation subset] Archivio (Validation subset)
Licenza: Creative Commons: Non Commerciale - Condividi allo stesso modo 4.0 (CC BY-NC-SA 4.0)

Download (105MB)
[thumbnail of Test subset] Archivio (Test subset)
Licenza: Creative Commons: Non Commerciale - Condividi allo stesso modo 4.0 (CC BY-NC-SA 4.0)

Download (116MB)
[thumbnail of Sedimentary facies dataset_README file] Documento di testo(rtf) (Sedimentary facies dataset_README file)
Licenza: Creative Commons: Non Commerciale - Condividi allo stesso modo 4.0 (CC BY-NC-SA 4.0)

Download (100kB)

Abstract

The study of subsoil, by nature inaccessible to direct observation, relies on sediment cores analysis, representing a fundamental information source. Sedimentary facies, in particular, i.e. sediment bodies or packages of strata formed in specific depositional environments, is essential for a wide range of scientific applications such as climate change studies, engineering geology, land subsidence calculation, and reservoir characterization. High-resolution facies analysis requires specific skills and training that can be a limitation to a proper understanding of the subsoil. This dataset consists of a robust database of digital images of sedimentary cores acquired in the Po Plain and the Adriatic coastal plain of Marche, Abruzzo, and Apulia regions (Italy). This database has been used to perform semantic segmentation of sedimentary facies using conventional neural networks, identifying six target classes that reflect a wide spectrum of continental to shallow-marine depositional environments.

Abstract
Tipologia del documento
Dataset
Autori
AutoreAffiliazioneORCID
Di Martino, AndreaDepartment of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna0000-0002-9860-4253
Amorosi, AlessandroDepartment of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna0000-0002-2263-4691
Parole chiave
Artificial Intelligence, Neural Networks, Stratigraphy, Sedimentary facies, Semantic segmentation,Convolutional Neural Networks
Settori scientifico-disciplinari
DOI
Contributors
Contributor
Affiliazione
ORCID
Tipo
Di Martino, Andrea
Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna
Contact person
Data di deposito
20 Giu 2023 10:56
Ultima modifica
20 Set 2023 21:00
Nome del Progetto
PASS - The Po-Adriatic Source-to-Sink system (PASS): from modern sedimentary processes to millennial-scale stratigraphic architecture
Programma di finanziamento
Ministero dell'Università e della Ricerca - Progetti di Rilevante Interesse Nazionale - ANNO 2017 (PRIN 2017)
URI

Altri metadati

Statistica sui download

Statistica sui download

Gestione del documento: Visualizza il documento

^