Exploring ranklets performances in mammographic mass classification using recursive feature elimination

Masotti, Matteo (2005) Exploring ranklets performances in mammographic mass classification using recursive feature elimination. [Preprint]
Avviso

Esiste un'altra versione di questo documento. Clicca qui per vederla.

Full text disponibile come:
[thumbnail of masottiICIP05ranklets.pdf]
Anteprima
Documento PDF
Licenza: Creative Commons Attribution Non-commercial 3.0 (CC BY-NC 3.0)

Download (197kB) | Anteprima

Abstract

The ranklet transform is a recent image processing technique characterized by a multi–resolution and orientation selective approach similar to that of the wavelet transform. Yet, differently from the latter, it deals with the ranks of the pixels rather than with their gray–level intensity values. In this paper ranklets are used as classification features for a mammographic mass classification problem. Their performances are explored recursively eliminating some of the less discriminant ranklets coefficients according to the cost function of a Support Vector Machine (SVM) classifier. Experiments show good classification performances even after a significant reduction of the number of ranklet coefficients.

Abstract
Tipologia del documento
Preprint
Autori
AutoreAffiliazioneORCID
Masotti, Matteo
Parole chiave
Ranklets, Wavelets, Support Vector Machine, Recursive Feature Elimination
Settori scientifico-disciplinari
DOI
Data di deposito
02 Mar 2005
Ultima modifica
06 Mag 2015 07:53
URI

Altri metadati

Versioni disponibili di questo documento

Statistica sui download

Statistica sui download

Gestione del documento: Visualizza il documento

^