INTELLIMAN. WP4. Adaptive shared autonomy. T4_4. Human intent detection for autonomy arbitration. Fuzzy Myocontrol. v0

Mohammad, Sheikhsamad ; Roberto, Meattini ; Davide, Chiaravalli ; Raul, Suárez ; Jan, Rosell ; Gianluca, Palli (2025) INTELLIMAN. WP4. Adaptive shared autonomy. T4_4. Human intent detection for autonomy arbitration. Fuzzy Myocontrol. v0. University of Bologna. DOI 10.6092/unibo/amsacta/8768. [Dataset]
Full text disponibile come:
[thumbnail of INTELLIMAN] Archivio (INTELLIMAN)
Licenza: Creative Commons: Attribuzione 4.0(CC BY 4.0)

Download (672kB)

Abstract

The dataset is related to grasp strength regulation in myocontrolled robotic hands, with a specific focus on the analysis of contact forces and adaptive control gain modulation during grasp execution. It includes force measurements and controller-related signals collected during human-in-the-loop experiments performed with an anthropomorphic robotic hand under different force control strategies. The dataset supports the quantitative evaluation and comparison of heuristic model-based, fuzzy-based, and neural network-based force controllers used to regulate grasp strength during tripod grasps. The data enable analysis of force tracking accuracy, interaction stability, and control smoothness across different grasp force levels. The data were acquired from experimental trials in which users controlled the robotic hand via surface electromyography (sEMG) signals and received vibrotactile feedback related to grasp force deviations. During the experiments, users were asked to track predefined target force levels while grasping rigid objects of different shapes. Contact forces at the robotic fingertips and the corresponding controller gain modulation signals were recorded during task execution to assess how different control strategies influence force overshoot, steady-state error, and responsiveness. The dataset enables statistical and qualitative analysis of force tracking performance, as presented in the associated publication: M. Sheikhsamad, R. Meattini, D. Chiaravalli, R. Suárez, J. Rosell, and G. Palli, “User-Tailored Fuzzy-Based Grasp Strength Regulation in Myocontrolled Robotic Hands,” IEEE 30th International Conference on Emerging Technologies and Factory Automation (ETFA), 2025

Abstract
Tipologia del documento
Dataset
Autori
AutoreORCIDAffiliazioneROR
Mohammad, SheikhsamadUniversitat Politècnica de Catalunya03mb6wj31
Roberto, Meattini0000-0003-0085-915XUniversità di Bologna, Dipartimento di Ingegneria dell'Energia Elettrica e dell'Informazione "Guglielmo Marconi"01111rn36
Davide, ChiaravalliUniversità di Bologna, Dipartimento di Ingegneria dell'Energia Elettrica e dell'Informazione "Guglielmo Marconi"01111rn36
Raul, SuárezUniversitat Politècnica de Catalunya03mb6wj31
Jan, Rosell0000-0003-4854-2370Universitat Politècnica de Catalunya03mb6wj31
Gianluca, Palli0000-0001-9457-4643Università di Bologna, Dipartimento di Ingegneria dell'Energia Elettrica e dell'Informazione "Guglielmo Marconi"01111rn36
Settori scientifico-disciplinari
DOI
Contributors
Contributor
ORCID
Tipo
Affiliazione
ROR
Roberto, Meattini
Contact person
Università di Bologna, Dipartimento di Ingegneria dell'Energia Elettrica e dell'Informazione "Guglielmo Marconi"
Data di deposito
06 Feb 2026 12:17
Ultima modifica
06 Feb 2026 12:17
Nome del Progetto
IntelliMan - AI-Powered Manipulation System for Advanced Robotic Service, Manufacturing and Prosthetics
Programma di finanziamento
EC - HE
URI

Altri metadati

Statistica sui download

Statistica sui download

Gestione del documento: Visualizza il documento

^